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ABSTRACT 

An algorithm is presented for copying an arbitrary list structure into a block of 

contiguous storage locations without destroying the original list. Apart from a fixed 

number of program variables, no auxiliary storage, such as a stack, is used. The 

algorithm needs no mark bits and operates in linear time. It is shown to be 

significantly faster than the best previous algorithm for the same problem. 
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1. Introduction 

The problem considered in this paper is the creation of a copy of an arbitrary 

LISP-type list structure without the use of a stack or any other working storage which 

depends on the size or complexity of the list to be copied. Apart from a fixed number 

of program variables, the only storage available is that occupied by the original list 

and the copy. Copying differs from moving a list [1] in that the original structure may 

not be destroyed during processing. 

Algorithms for the constant workspace copying problem have been given by 

Lindstrom [7] and Fisher [4J Lindstrom showed how to copy an arbitrary n-cell list 

structure in time 0(n log n) if a mark bit is available in each cell, and in time 0(n2) if 

there are no mark bits; both algorithms can copy into an arbitrary list of available 

cells. Fisher's algorithm takes only linear time and needs no mark bits, but makes a 

minor sacrifice in generality: the free list must be a block of contiguous cells. 

The algorithm to be presented in this paper is significantly faster than Fisher's, 

and has the same free-list restriction. While Fisher's algorithm requires three passes 

over the data, the algorithm of this paper requires slightly more than two full passes, 

depending on the degree of sharing in the structure to be copied. In addition, a pass 

here is more efficient than in Fisher's algorithm, especially when there are many 

pointers to atoms. 

The principal difficulty in copying lists is that several pointers can point to the 

same cell. The algorithm will therefore be introduced in three stages which reflect the 

complexity of these multiple references.   In the following section an algorithm is given 

■ —    -     ■ -   - — 
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•nd the «ppendi».   Section 6 concludes the paper. 

2. Copying a binary tree 

Following LISP convent 

called cor and cdr, which may point to 

ions [8], assume that a Ust ceU contains two pointers, 

any list cell or to non-list items called atoms. 

Atoms themSelves are not cop,ed. Fach ,ist cell occupies one memory .ocation. ,n this 

Paper a,, algorithms trace l.ts in the cdr _„, fhat „ they trace cdr ^ car „ 

both point to lists. 

We m assume ,0 this secion the, the „st ..n*« to be copied contains no 

»-t.pl.-r.tar^ cens, and is thereto, a dinar, „ee w on-.n. in,orm.tion et 

the ,„, nodes on,y.   This assumption gr.a.,y s,mpll(,es the copyin6 tasK.  Obsec.e that 

consecutive cell in the free area. 

Clearly, then, the only difficulty in 
copying a structure of this kind is what to do 

-. cou.d he stacked W bül ,his would vi0,a,e |he constan| ^^ ^ 

We c an evade this problem by keeping a stack in the 
copy of the structure 
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itself. Figure 1 shows how this can be done. The list structure to be copied is shown 

in Figure 1(a). In Figure Kb) cdr-direction tracing has stopped temporarily at a cell 

with two atoms. The first four cells of the list have been visited, and copies of cells 

with at least one atom have their final values. The variable avail points to the next 

free cell in the copy area. 

Copies of cells with two list pointers have been linked together in UFO order on 

the "K list": this is a linked stack of cells on which more work needs to be done. The 

cars of such cells have been copied without change; this permits tracing of the lists 

they point to when the k-list is "popped". As further lists are traced, the k-list will 

grow and shrink exactly like a stack. Whenever tracing stops at a cell with two atoms, 

car of the first cell on the k-list is the next sublist to be traced. 

Two crucial observations need to be made about cells on the k-list. First, the 

final value of cdr of these cells is a pointer to the next sequential cell in memory. This 

redundancy is what permits the k-list links to be kept in the new cdrs. Second, the 

final value of car of such a cell is the value of avail at the time the cell is removed 

from the k-list. This is apparent in Figure 1(b). Therefore both car and cdr may be 

given their final values when the cell is popped. 

Figure 1(c) shows what happens after the first k-list cell is removed and the 

corresponding sublist traced, Figure 1(d) shows the structure after the last k-list cell 

tvs been removed and copying has finished. 

Algorithm I, below, copies the tree structure pointed to by h into the block of 

free storage beginning at location avail.  On termination of the algorithm, v will point to 

> 
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the copy, and avail to the next available cell in the copy area. Algorithn 1 is 

significantly faster than the one given by Lindstrom [6], which requires three visits to 

each cell; Lindstrom's algorithm, however, can copy into an arbitrary free-list. 

ALGORITHM I 

Part A: Copy the top level of a list. 

Al. [Initialize.]  M-NIL, v«-avail, and x*-h. (x points to the current original cell.) 

A2. [Get new cell.]  m-avail, avail*-avail*l.  (n points to the copy of x.) 

A3. [Process cell x.]  Find the data types of car{x) and cdr(x).   Go to the appropriate 

box below; 

cdr(x) 
atom list 

atom 

car(x) 

list 

car(n)<-car(x) car{nKcar(x) 

cdr(nKcdr(x) cdr(n)«-avail 

go to Bl x*-cdr(x) 

car(nKavail car(n)«-car(x) 
cdr(n>*-cdr(x> cdr(nKk 

x«-car{x) k«-n 
x«-cdr{x) 

A4. [Loop.]  Go to Step A2. 

Part B: Find the most recently seen sublist. 

Bl. [Done?]  If k=NlL then halt. 

L12. [Pop k-list.]  t<-cdr(k), x^car{k), car(k)«-avail, cdr{k)*-k+l, M-t, and go to A2. 

3. Copying an (almost) arbitrary list 

Suppose now that the list structure to be copied may contain cells pointed to 

more than once, that is, s/iaring and cycles may exist in the list.   If Algorithm 1 were 

-5- 
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applied to such a structuis, the "copy" would be non-isomorphic to the original in that 

shared cells would be copied as many times as there were paths to them from the 

head of the list. And if there were cycles in the structure, Algorithm I would loop 

indefinitely. 

The traditional method for dealing with these problems is to plant a "forwarding 

address" in (say) car of each celi of the original list when it is first visited [1, 4, 7, 9]. 

The fcrwarding address points to the copy of the cell in which it is found. If, during 

tracing of the original structure, a forwarding address should be discovered where an 

ordinary car was expected, a pointer to that cell could be "forwarded" to the copy, and 

no spurious copies made. This technique will be used here. Since the new list area is 

assumed to be a block of contiguous locations, checking for a forwarding address can 

be accomplished by comparing a pointer with the address boundaries of the region. 

Let the predicate new(x) be true if and only if x points to a cell in the new list area. 

The forwarding address technique has two immediate consequences. First, an 

old car displaced by a forwarding address must be saved somehow. This is simple 

when car is an atom, for then old and new cars are the same; but if car is a list, old 

and new cars will not in general have the same value, so the old value must be salted 

away in the copy cell. The second consequence is that at some point the forwarding 

addresses must be removed and the old cars restored. This suggests a second pass 

over the original structure, whose main purpose is the restoration of old cars. 

The second pass must do other work as well. Observe that with each cell of the 

original list are associated five quantities of interest (old and new car, old and new cdr, 

forwarding address), but only four places to put them (car and cdr fields of the original 

-6- 
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cell and the copy). Obviously, the«, not all five items can be stored between passes; 

some must be computed or recomputed during Pass Two. This computation is greatly 

simplified by the fiict that the second pass can mimic exactly the order in which the 

first pass visits cells. 

It will be convenient to identify pointers as of three types: pointers to atoms, 

pointers to cells not yet visited during the current pass, and pointers to cells already 

visited. Let "UV pointer" refer to a pointer to a "UV cell", that is, an unvisited one. An 

"AV pointer" will point to an "AV cell", that is, an already visited one. These definitions 

depend, of cour ^e, on the order in which cells are visited. An AV cell can be identified 

during the first pass by the presence of a forwarding address in its car. During the 

second pass, an AV cell is one in which car is not a forwarding address, that is, a cell 

whose forwarding address has already been removed. When multiple pointers to a 

single cell exist, one of them will be UV, and the rest AV. 

We may now make a crucial observation about AV and UV pointers: the new 

value of any UV pointer can be recomputed during the second pass, but the new value 

of an AV pointer cannot. Consider first the case of a UV pointer. If it is followed 

immediately after discovery during the trace, its new value will be a pointer to the 

following ceil in the copy area. Ii not, it must be car of a cell on the k-list, and its new 

value will be the value of avail when the cell is removed. In either case the new value 

can be recalculated during the second pass, provided the two passes visit cells in 

exactly the same order. Therefore, no new values for UV pointers need to be stored 

during the first pass. 

Now consider an AV pointer.   Its new value will be the forwarding address of 

*****—    ■■ -    "    — ■ ■        ■    i tm......*..^-.- ■- liir—- -" -■■■ -- -    —'-■ —.——^—^^^^ ^—^ - - - - • —^ 
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the AV cell it points to. But during the second pass that forwarding address will be 

removed before the AV pointer is encountered. Thus there is no choice but to store in 

one of the four available places the new value of each AV pointer found. 

If a pointer points to an atom, old and new values are identical, so only one 

value needs to be saved between passes. If a pointer is a UV pointer, only its old 

value needs to be saved, since its new value can be recalculated during the second 

pass. Only in the case of an AV pointer must two values be preserved. Recalling that 

one of the available storage locations is reserved for 3 cell's forwarding address, these 

observations mean that only cells with two AV pointers require more than four places 

to put things. This problem will be dealt with in Section 4; for the moment dssu-tm that 

there are no such ceils. 

Note that if a cell has two UV pointers, only three items need to be saved. The 

fourth place (the new cdr) can be used, happily, to store a k-list link, just as was done 

in Algorithm I. 

Figure 2 shows the operation of the two-pass algorithm on a list with shared 

substructures and cycles. Figure 2{a) shows the original structure, and Figure 2(b) 

shows the state just before the first cell is removed from the k-list. The cars of 

original cells visited thus far have been replaced by forwarding addresses. Except for 

cells on the k-list, all AV pointers in the copy have their final values, these having 

been obtained from the appropriate forwarding addresses. Note that in Figure 2(b) k 

points to a cell with an AV pointer in its car. When this celt is removed from the k-list, 

its new car must be saved, as was observed above. Since the oid car must also be 

preserved, it is moved to cdr of the new cell, where the k-list link is no longer needed. 

-8- 
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This is shown in Figure 2(c), in which both Mist cells have been removed and 

Pass One is complete. The V in the first new cdr is a marker which indicates that the 

cell containing it should be added to the k-list during Pass Two. This small luxury is 

made possible by the fact that only three quantities need be stored on behalf of such 

cHls. (A reserved atom is not necessary for this job; any atom will do.) Figure 2(d) 

shows the progress of Pass Two up to popping the k-list for the first time; it 

corresponds to Figure 2(b) for Pass One. In Pass Two the k-list contains only those 

cells known to have UV pointers in thei"- cars, in other words, cells found with the atom 

* in their cdrs. 

Algorithm II, below, will copy the list at h into the area beginning at avail, and 

terminate with v pointing to the copy. Step A5 cannot deal with cells having two AV 

pointers; this problem will be remedied in Section 4. 

A close examination of Step A5 will reveal that during Pass Two, the question of 

whethe- an original car or cdr is an AV or a UV pointer can be answerrd without 

fetching from memory the cell it points to. This permits the eight-way decision made 

in Step A5 to be repeated in Step C4 by looking only at car and cdr of the original cell 

and the copy.   The importance of this will be seen in Section 4. 

•    r 
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ALGORITHM 11 

Pass One, Part A: Copy the top level of a list. 

Al. [Initialize.]  M-NIL, v«-avail, x*-h. 

A2. [Get new cell.]  n«-avail, avail«-avail+l. 

A3. [Save car and cdr.]  a«-car(x), d«-cdr(x). 

A4. [Store forwarding address.] car(xH-n. 

A5. [Process cell x.] Find the data types of a and d. If one is a list, check car of the 
cell it points to to discover whether it is UV or AV. Go to the appropriate box 
below; 

atom 
d 

AV list UV list 

atom 
car(n)<-ö 
cdr{n)«-d 
go to Bl 

car(n)<-a 
cdr(n)«-car(d) 
go to Bl 

car(n)<-a 
cdr{n)<-avail 
x<-d 

AV 
list 

car{n)«-car(a) 
cdr(n)<-a 
go to Bl 

car(n)«-a 
cdr(n><-K 
k«-n 
x«-d 

UV 
list 

car(n>«-a 
cdr(n)*-d 
x«-a 

car(n)<-a 
cdr(n)<-car(d) 
x«-a 

A6. [Loop.]   Go to Step A2. 

Pass One, Part B; Find tne most recently seen sublist. 

Bl. [Done?]  If k-NIL then go to Step 01. 

B2. [Pop k-list,]  t^-k, k«-cdr{k), x«-car(t). 

B3. [x already copied?]   If new(car(x)) then cdr{t)vcar(t), car{t)«-car{x), and go to Step 
Bl. 

B4. [Leave marker, return to part A.] cdr(tM, and go to Step A2. 

.11- 
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Päiss Two, Part C: Trace the top level of a list. 

Cl. [Initialize.] M-NIL, avail*-v, x*-h. 

C2. [Get new cell.]  n«-avail, avail«-avail+l. 

C3. [Savrj car and cdr.] a«-car(n), d«-cdr(x). (Note car(n)( not car{x). Note also that 
car(n) may not be the original car(x); it might be the original cdr(x) instead. See 
Steps A5 and B2.) 

C4. [Process cell x.] Find the data types of a and d, and go to the appropriate box 
below: 

d 
atom list 

atom 

list 

carfxKa 
go to Dl 

car(x)«-a. 
If cdr(n)«n+l then x*-d 

Otherwise, go to Dl. 

If cdr(n) is an atom then 
car(x)«-a, car{nK-avaii, x«-a. 

Otherwise, car(x)<-cdr(n), 
cdr(nM, and go to Dl. 

  

If cdr{n)«» then car(xKa, 
cdr(n)«-K, K«-n, x«-d. 

If new(cdr(n» then car(xKa, 
car{n>«-avail, x«-a. 

Otherwise, car(x)«-cdr(n>, 
cdr(n><-avail, x<-d. 

I 

C5. [Loop.]  Go to Step 02. 

Pass Two, Part Ü: Find the most recently seen sublist. 

D\. [Done?]  If k-NIL then halt. 

D2. [Pop K-list.] t«-k, k«-cdr(K), x«-car(t), car(t)«-avail, cdr(tM+l, and go to 02. 

4. Copying arbitrary lists 

We turn now to the problem of cells with two AV pointers.   Since such cells 

require, according to the current two-pass scheme, that five things be stored In four 

. 

-12- 
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places, another method must be found for dealing with them.   Two passes are not 

sufficient. 

We introduce, therefore, a special pass in between the current two, which will 

handle these cells. During the first pas-, no new values will be stored for them. The 

copy of such a cell will be in fact an exact copy of the original, the old car will get a 

forwarding address (as it must), and the old cdr will be used to link all such cells 

together on the "b-list". 

After Pass Ons is finished, the b-list will be processed. When a cell is removed 

from the b-list, its original car and cdr will be restored by following the forwarding 

address to the cell's copy. Furthermore, the new values of car and cdr are the 

forwarding addresses of the cells pointed to by the old car and cdr. Final values can 

therefore be given to both pointers of both cells. 

Two questions arise about the use of this technique. First, how can we be sure 

that the necessary forwarding addresses will still be there? Put another way, is it 

possible for a b-list cell to contain a pointei to a cell already removed from the b-list, 

and whose forwarding address, therefore, is lost? It is plainly not possible, provided 

the b-list is processed in LIFO order. 

Second, can we still guarantee that the second pass will be an exact replica of 

the first? The problem here is that during Pass Two certain cells (those previously on 

the b-list) will appear to have been visited already, when in fact they have not been. 

But recall from Section 3 that there is enough information in the cell and its copy to 

reconstruct exactly which cell was visited next during Pass One, and whether pointers 

-13- 
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pointed to AV or UV cells, without looking at the cells pointed to by the original car 

and cdr. What will happen with former b-list cells is that they will be visited with the 

expectation of finding a forwarding address in car; if it is missing, then the cell was on 

the b-list. 

Figure 3 shows how the b-list works. Figure 3(a) is the original list, and Figure 

3(b) shows the state of affairs just befor-j visiting a cell destined for the b-list. Figure 

3(c) shows the situation after the visit, which also marks the end of Pass One. Note 

that the original car and cdr are stored in the copy of the cell. 

Next comes the processing of cells on the b-list, during which final values are 

written in each original cell and its copy. This is done in Figure 3(d). Pass Two then 

begins. Figure 3(e) for Pas* Two corresponds to Figure 3(b) for Pass One. It also 

illustrates the hazard of relying on forwarding addresses, instead of the trace order, to 

set new values of UV pointers. Whereas car(k)<-car(car(k)) would have worked In 

Figure 2(d), it will clearly fail in Figure 3(e) because car(car(k)) is no longer a 

forwarding address. 

Algorithm II can now be extended to cover arbitrary lists. First, cells with two 

AV pointers should be put on the b-list (b should be initialized to NIL in Step Al). In 

other words, the empty box in Step A5 should be filled with the following: 

car(nKa 
cdr(nH-d 
cdr(xKb 
b«-x 
go to 81 

. 

-14. 
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When Pass One finishes (at Step Bl), the following statements should be 

executed: 

1. [Done?]  If b-NIL then go to Cl.  (Begin Pass Two if the b-list is empty.) 

2. [Pop b-list.]  x«-b, b«-cdr(b), n«-car(x).  (n points to the copy of x.) 

3. [Set final values and loop.] a«-car(n), cdr{xKcdr(n), C8r(n)«-car(car(n)), 
cdr(n)*-car(cdr(n)), car(x)<-a, and go to Step 1. (car(x) is the last to be written 
because of the possibility that x might contain a pointer to itself.) 

One change must be made in Pass Two. Each new value of x must be checked to 

see if it was on the b-list. If it was, car(x) will not be a forwarding address, and no 

work will need to be done on either x or n. We insert, therefore, the following 

statement between Steps 02 and 03: 

02.5 [Was x on b-list?]  If new(car(x)) is false then go to Step Dl. 

Let Algorithm III denote Algorithm II with these additions. The careful reader 

will have noticed that Pass Two of Algorithm III can be simplified slightly if more cells 

are put on the b-list during Pöis One. Those cells eligible are ones containing one 

atom pointer and one AV pointer. If AV pointers are rare overall, this change would 

speed up Pass Two of the algorithm. Addition of these (few) cells to the b-list would 

free the second pass of having to check for certain cases in Step 04. The savings 

would thus be proportional to the number of cells with one atom pointer and one list 

pointer (AV or UV); the cost would be proportional only to the number of cells with 

one atom pointer and one AV pointer. 
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5. Comparison with Fisher's algorithm 

Because Algorithm III and Fisher's algorithm are both linear in the number of 

cells copied, a comparison of the two must look at how much computatational work is 

done per cell, and not just at the number of cell visits. The analysis of this section and 

the Appendix will measure how many times a list cell must be read or written by each 

algorithm. This simplifies the comparison task considerably by ignoring such things as 

arithmetic operations, instruction fetches, and the time required by LISP primitives 

such as atom. For systems in which reading or writing a list cell is expensive relative 

to. say. fetching an instruction-for example, a system where the copying algorithm is 

microprogrammed or resides in a cache--the analysis done here realistically measures 

the computational effort involved. In other systems the work measured here is just 

part of the total. 

The straightforward but tedious counting of memory accesses in the two 

algorithms is done in the Appendix. The speed of each algorithm depends crucially on 

the extent of multiple pointers to the same cell, For a given list structure, let a be the 

fraction of cars which point to lists; let d be the fraction of cdrs which do. Let b be 

the fraction of cells that go on the b-list in Algorithm III; let fcj and k2 be the fractions 

of cells that go on the k-list during Pass One and Pass Two. respectively. The 

Appendix shows that Algorithm III will execute 

T - (5+2a+d+3b+2k1+2k2)n 

reads and writes of list cells to copy an n-cell structure. 

Fisher's algorithm (as it appears, slightly optimized, in the Appendix) will execute 

r = (10+2a+dK1+2c2)n 
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memory operations on list cells to copy an n-cell structure. The parameter cl is the 

fraction of cells whose cars were UV pointers during the first pass of Fisher's 

algorithm; C2 is the fraction of cells whose cdrs were AV pointers. Thus, for structures 

with little sharing, cj is approximately a, and C2 is approximately zero. 

We can easily show that T is always less than T   Because no cell can be on 

both the K-list and the b-list in either pass of Algorithm III, b+k^l and b*K2Sl.  Then 

T - (5+2a+d+2(b+k1Hb+k2)+K2)n S (9+2a+d)n < V. 

The relationships among the various parameters of T and V can be seen if we 

make one simplifying assumption. Observe that Algorithm III and Fisher's algorithm do 

not visit cells in the same order: where Algorithm III processes deferred list cars in 

LIFO order (via the k-list). Fisher's algorithm uses FIFO order (via a sequential scan of 

the copy, in the manner of Cheney [1]). This 'mplies that an AV pointer for one 

algorithm may turn out to be a UV pointer for the other. The assumption we will make 

is that the frequency of occurrence of AV pointers in car, in cdr, and in both, will be 

the same for both algorithms. (Note that the total number of AV pointers must be the 

same for both algorithms, independent Of the assumption.) 

Under this assumption, Figure 4 illustrates the relationships among the 

parameters when cells are classified according to the table of Step A5 in Algorithm III. 

Note that the containment of o;ie area by another (e.g, aiea b is contained by area C2) 

does not mean that particular cells in the first category are necessarily in the second; 

it means only that the numhtr of cells in the first is no greater than the number of 

cells in the second (e.g., b^). 
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CAR 

atom 

CDR 

AV  list UV list 

atom 

AV  list 

UV  list 

C2 d 

^•-^ • -4 ~m     —• 

f 
a b 

_ *) 

I 

kl 

c1 

r~ 

k2 

1 .  
N._ 

J, 
!•   - -V — — _- _   

FlgUff 4;     Relationsl.ips  among  the   parameters  of Algorithm   111   ana 
Fisher's   algorithm. 

:) 
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Table I shows the number of list cell references that each algorithm would make 

for a variety of n-cell list structures. Both ale .thms are at their best for a linear Hat 

of atoms (Table 1(a)), but the extremes of relative performance come, as might be 

guessed, when there is considerable sharing. Table 1(c) shows the worst case 

structure for Algorithm III relative to Fisher's algorithm: a full binary tree whoae leaf 

nodes all contain two AV pointers. For such a structure, Fisher's algorithm would 

execute 1.26 times as many memory accesses as Algorithm HI. 

Algorithm III does best in comparison with Fisher's algorthm for the structure of 

Table 1(d): a list in which all cars are UV pointers (except, necessarily, one) and all cdrs 

are AV pointers. For this structure, twice as many list-cell references taKe place in 

Fisher's algorithm as in Algorithm III. 

Table   1(e)  uses   parameter  values  derived  from   measurements  of   real   list 

structures in five large LISP programs, reported in [2].   That study found that roughly 

ore third of cars  and three fourths of cdrs pointed to lists.   This means that the 

fraction of pointers which were AV was .333+75-1 =.083, since for each liat cell there 

is exactly one UV pointer.   If we assume that AV pointers were as common among car 

list pointers as among cdr list pointers, then the fraction of cells containing UV cars is 

.307,  and  the  fraction containing UV cdrs  is  .692.   This means that ^-.307  and 

C2-.058.   If we assume that car being a list is independent of cdr being a list, then 

kr.333*692-.23 and k2=.307«.692-.212.   If AV pointers occur independently in car 

and cdr, then b-.026».058-.002.   For structures with these characteristics. Fisher's 

algorithm will execute abrut 1.62 times as many list-cell references as will Algorithm 

III. 
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LIST STRl'CTURh 

(a) List of atoms 

a=0, d-1, k1=k2=b=0, c -c -0 

(b)   Balanced  binary   tree 
a=d=k =k =.5,  b-0,   c -.5,  c--0 

rSBn 
rS3-| rE 3i 

Gab ofa • • • ffi] CE 

(c)  Worst   case   for Algoritlr.ii   II 

EH Mzf  •   •  • W^M 
(d) Worst case for Fisher's algorithm 

a=d=l, k1=k2=b=0, c =c =1 

BEP • • 
(e) Typical LISP case from [2] 

a=0333,   d=075)   k -.23,   k =.212, 
b^.002,   c  =,307,^ =.058- 

Memory  References 

Fisher1s 
algorithm 

T' 

11   n 

12  n 

14.5  n 

16  n 

n. M  n 

Algorithm  III 
T 

6  n 

8.5  n 

11.5  n 

8  n 

7.3  n 

T 
T 

1.83 

1.41 

1.26 

1.62 

TA|LE   I:     Comparison  of  Algorithm   III   and   Fisher's  algorithm.     Parameter 
values   neglect   terms  of  OCl/n). 
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6. Conclusion 

A„ a,8<>ri,hn. K« been given .0, copying arbifariiy iinKed USP-typ. W 

struclurss into a blocK o. sequential «y iocabons w.tbou, the os. of a stacK. 

Under son,, simple assumption, about computation time, the algorithm has been shown 

,„ be .ester than the best previous algorithm, that of Fisher W The speed-op ..etc, 

is between 1.26 end 2, and .or some list structures found in practice is about 1.62. 

1 

****,*,**».   Helpfol comments on . draft of this pep * by Guy 

Almes, Ellis Cohen, and Samuel Fuller. 
i 
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APPENDIX; Memory references in Algorithm III and Fisher^ algorithm 

As discussed in Section b, W9 will compare the two algorithms by counting the 

number of times each must access memory to read or write a list cell. We assume that 

car and cdr are contained in a single word of memory. We also assume a certain 

amount of straightforward optimization with respect to this measure, e.g., if cfcr(x) and 

cdrU) are both read (written) in a single iteration of an algorithm, we will say that on« 

memory read (write) has taken place. Operation counts will be functions of n, the 

number of cells in the structure to be copied; of a, the fraction of cars which point to 

lists) of d, the fraction of cdrs which point to lists; and of some additional terms 

associated vith one algorithm or the other. 

Analysio of Atgorithm III 

Pass One. Each cell of the original structure is read once for every pointer to it. 

The first of these reads occurs whpn the trace first encounters that cell (Step A3>} the 

rest occur in order to obtain the forwarding address stored there (Steps A5 and B3). 

The number of list pointers, and therefore the number of reads of original cells, is 

an+dn+1 (the 1 comes from the pointer root). More reads will occur when cells are 

popped off the k-list in Step B2. If Kj is the fraction of cells which are put on the k- 

list in Step A5, then anulher hjfl reads will occur, for a total of an+dn+kjn+1 during 

Pass One. Write operations occur when each forwarding address is written in Step A4 

(n writes), when each new ceil is written in Step A5 (another n), and when cells on the 

k-list have their contents altered in Step B3 or B4 (kjn writes). Thus 2n+k1n write 

operations will occur during Pass One. 

) 
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ß-u-.' Tu^ Let b be the fraction of cells which are put on the b-iist. Then for 

each b-list cell the following operations will occur: the original cell and its copy will be 

read and written once each, and the cells pointed to by the original car and cdr will be 

read to retrieve tneir forwarding addresses.  The totals are 4bn reads and 2bn writes. 

Pass Two. Cells formerly on the j-list will be visited once (Step C2.5) and their 

copies will be neither read nor wntte v Thus there will be n reads of original cells, 

but n-bn of copy cells. B-list cells have had their original cars restored already, so 

n-bn writes will occur for this purpose. Copy cells will be written in Step C4 if car is 

a list, but since copies of b-list cells never see Step C4, this will contribute an-bn 

writes. Let ^ be ,he fract'on of cells which 8° on ,he k'list in S,ep C4 <Precise,y 

those with V in their cdrs). Then l^n reads and l^n writes will occur in clap D2. 

The totals for Pass Two are 2n-bn+k2n reads and n+an-2bn+K2n writes 

The  grand  totals for  Algorithm  III are  2n+an+dn+3bn+K1n+k2n+l   reads  and 

3n+an+Kin+K2n writes.   Neglecting the single read on behalf of the pointer root, the 

sum is 

T-(5+2a+d+3b+2k1+2k2)n 

memory accesses. 
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Fisher's algorithm 

r'sher's algorithm, slightly optimized and translated for easier comparison with 

Algorithm III, appears below,  ror a thorough discussion of this algorithm, see [4J 

Pass One 

Al. [Initialize.]  v<-j»-avail, x*-root. 

A2. [Get free cell]  n«-avail, avoilt-avail+1. 

A3. [Process   cell   x.]  car(n)>-car(x), d^cdrfx), cdr{x)4-n.    (The  forwarding   address  is 
stored in cdr rather than car.) Go to the appropriate box below; 

atom 
d 

AV list 
cdr(n)«-d cdr(n)<-cdr{d) 

JJVIist  
cdr(nK-d, x«-d 
go to A2 

A4. [Done?]  If j>avail then go to Step Bl. 

A5. [Get  next car.] K*rar(ft j«-j+l.   (Note the sequential scan of the copy to find 
sublists.) Go to the appropriate box below; 

atom 
x 

AV list 
go to A4 

UVIist 
car()-l)«-cdr(x) 
go to A4 

car(j-l)«-av8il 
go to A2 

Pass Two 

Bl. [Initialize.]   n'-j'-v, x*-roof. 

B2. [Exchange cdrs.]  d»-cdr(n), cdr(xM, cdr(n)<-x1 n«-n+l. 

B3. [End of segment'] If d is an old list (i.e., not(atom(d)) and not(new(d»), then x«-d 
and go to B2. 

B4, [Done?]   If jün then go to Step Cl. 

B5. [Check car{j>.] If carM»n then d<-car(cdr(j))( j^j+l, and go to Step B3. Otherwise 
H+l and go to Step B4. (car(j)«n iff car(j) was the next list traced during Pass 
One.) 
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Pass Three 

Cl. [Scan in reverse order.] n«-n-l, x«-cclr{n>p d«-cdr{x). 

C2. [Write final cdrs.] d points to an atom, a new list cell (new(d)), or an old list cell. 
Go to the appropriate box below: 

atom 
d 

new list old list 

cdr(n)4-d cdr(nM 
cdr(x)«-cdr{d) 

cdr(n)<-n+l 

C3. [Done?]  If n>v then go to Step Cl. Otherwise, avail«-) and ha'.t. 

Analysis of Fisher's algorithm 

Pass One. Just as in Algorithm III. each cell of the original structure Is read once 

for every pointer to it. Thus there are an+dna reads of cells in the original list. In 

Step A5 each copy cell is read once, so the total number of reads during Pass One is 

n+an+dn-tl. Writes occur when forwarding addresses are written into original cells in 

Step A3 (n writes), when copy cells are first created in Step A3 (n writes), and when 

new list cars are written a second time in Step A5 (an writes). The total number of 

writes is 2n+an. 

Pass Two. All new cells are read in Steps B2 and B5, for a total of 2n reads. 

One original cell is read each time car(j)-n in Step B5. This happens when car(j) wes a 

UV pointer during the Pass One; let C] be the fraction of cells for which this occurs. 

Tht»n 2n+c1n reads occur in Pass Two. Writes happen only in Step 82, in which each 

cell In the original list and the copy has its cdr written, for a total of 2n. 

Pass Thrte.   Each cell in original and copy is  read in Step Cl, for 2n reads. 
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Every new cdr is written once in Step C2, for a total of n writes. Whenever d is a 

new list in Step C2, one additional read and write are done. This condition 

corresponds to cdr(x) having been an AV pointer during Pass One; let C2 be the 

fraction of cells for which this happens, Then there are 2n+C2n reads and n+C2n 

writes in Pass Three. 

Summing   over   all   three   passes,  there   are  5n+an+dn+c1n+C2n+l   reads   and 

5n+an+C2n writes.   Neglecting the single read associated with root, the total is 

r - (10+2a+d+c1+2c2)n 

memory accesses. 
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